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Abstract

The interaction of a Taminar boundary layer
with an impinging shock wave is studied by solving
numerically the Navier-Stokes equations of compres-
sible viscous two-dimensional flow. A time-dependent
finite difference method of second order accuracy is
used. The outer edge of the computational region is
placed just outside the viscous layer, and the in-
viscid relatjons for oblique shock and for simple
compression and expansion waves are taken as bounda-
ry conditions at that edge. The computed solutions
show reasonable agreement with experimental data.

Introduction

The interaction of a boundary layer with an
impinging shock wave has been the subject of nume-
rous investigations for the last 25 years. Until
recently, theoretical work on the interaction was
based on the boundary-layer approximation, which
assumes that streamwise gradients of velocity are
much smaller than the gradients across the layer.
Studies based on this approximation 1% were suc-
cessful in elucidating the main features of the flow
in particular the thickening and separation of the
boundary layer, the extent of upstream influence,
and the pattern of the reflected waves. However,
their quantitative results agree well with experi-
ments for relatively Tow Mach numbers and weak shock
only. It should be expected that for stronger shock
waves the boundary layer assumptions are no Tonger
applicable, since a strong shock would produce large
streamwise gradients of velocity in the impingement
region. To take these effects into account, it is
necessary to solve the full Navier-Stokes equations
of flow.

Numerical solutions of the Navier-Stokes
equations for a Taminar boundary layer interacting
with an oblique shock wave were obtained by Skog-
Tund and Gay 3 (1969) and by MacCormack © (1971),
using modified Lax-Wendroff finite difference tech-
niques. In both solutions the outer edge of the
computational mesh was placed far away from the
boundary layer so that the edge would not be inter-
sected by reflected waves. As a consequence, a large
part of the mesh was occupied by essentially invis-
cid flow, and relatively few mesh cells were left
in the more important viscous-flow zone.

In the present study, the Navier-Stokes equa-
tions are solved numerically for the interaction
of a laminar boundary layer with an impinging shock
wave, using a scheme which allows to fit the compu-
tational mesh more closely to the region of viscous
flow. The outer edge of the mesh is placed just
outside the viscous layer, and the inviscid rela-
tions for oblique shock and for the reflected sim-
ple compression and expansion waves are taken as
boundary conditions at that edge. Since the mesh
does not contain much of the inviscid field,
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it covers more densely the viscous layer in which
the Navier-Stokes equations have to be solved ac-
curately. This scheme is similar to those employed
by Allen and Cheng 7 and by Carter 8 in solu-
tions not involving shock waves. The present work
indicates that the scheme is applicable also to
the boundary Tayer - shock wave interaction.

Differential and Finite-Difference Equations

The differential equations of continuity, mo-
mentum (Navier-Stokes) and energy for compressible
viscous flow in two.dimensions may be stated in
vector form as
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Here the variables are ‘nondimensional. The velocity
components u and v, the density p and the
viscosity wu refer to the free-stream values Uy >
Pg and yu, respectively, the pressure p s
referred to p,uj and the temperature T to u%/cp.
The coordinates ~ x and y are referred to

the shock impingement distance Xg from the leading
edge. The Reynolds number is defined by Re=pou0Xs/po,
the Prandtl number js denoted Pr , and vy 1is

the ratio of specific heats.

In addition to the differential equations (1),
we have the equation of state

s = :

LR (4)

and Sutherland's Taw relating viscosity to the tem-
perature.

To obtain a numerical solution, the differential
equations (i) were replaced by finite-difference
formulae. The method chosen was that of Brailovska-
ya 2 . in this method each time step is split in-
to two ronsecutive stages, giving
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where the bar denotes intermediate values between
the two stages. The terms S% , are calculated by
central differences. :

The stability condition for this system of

equations was found by Carter 8 to be
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where a 1is the local speed of sound (referred to

ug) .

Boundary and Initial Conditions

The computational region 1is shown in Fig. 1.

The upstream edge is located well ahead of the
shock impingement point so that the flow there is
practically not affected by the interaction. The va-
lues of the variables at the upstream edge were ta-
ken from an approximate theory of boundary layer on
a flat thermally-insulated plate in supersonic
stream.

196

Xs

ly, —— -

]

FIG.1- REGION OF SOLUTION

The outer edge of the computational region is
placed in essentially inviscid flow. The edge is
crossed by the shock wave and by simple compression
and expansion waves which emerge from the inter-
acting boundary layer. The simple waves are left-
running characteristics, and their direction is
related to the Tocal Mach number M by
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In a simple wave flow all variables have zero gra-
dients in the characteristic direction. This re-
quirement was used as boundary condition at the
outer edge. In applying the condition numerically
an interpolation had to be made, since characte-
ristics drawn from mesh points of the (N-1)-th
row do not in general pass through mesh points of
the N-th row.

The impinging shock wave was specified by
prescribing the pressure jump ratio of the shock
at the outer boundary. The pressure ratio and the
Mach number ahead of the shock determine, by the
Rankine-Hugoniot relations, the jump ratios of the
remaining variables. To reduce numerical fluctua-
tions in the solution, the pressure at two neighbou-
ring points ahead of the shock was equalized, and
the pressure jump was spread along two cells.

On the adiabatic wall, the boundary conditions
are

L E T _ =
u=0, v=0, e 0, y=0 (8)

The values of temperature and pressure at the wall
were extrapolated from inner field points using
second-degree polynomials. In the polynomial for
the temperature, the adiabatic wall condition was
taken into account. In extrapolating the pressure
it was found expedient to assume a zero normal



gradient of pressure at the wall, since a better
numerical stability was then obtained.

The downstream edge of the computational mesh
is placed far enough from the interaction region so
that the pressure is practically constant there and
the streamwise gradients of flow variables are very
small. The boundary conditions imposed at that
edge require that the streamwise gradients vanish
there.

The initial values were chosen by substituting
the undisturbed upstream values over the whole
field, except of a region below the shock where
a separation bubble was introduced in order that
the initial state would have a qualitative resem-
blance to the final steady flow.

Some Numerical Details

A mesh of 20 x 50 cells was used in the nume-
rical solution. The width to Tength ratio of each
cell was Ay/ax = 1/40 . The time step intervals
At were % of the maximum values indicated by the
stability condition (6).

During the first 300 time steps an artificial
d1ffus1o% term 5 was added to the viscous stress
terms in order to stabilize the transition
from the initial state. In the subsequent steps
(from 301-th on) artificial diffusion was not used.

The final steady-state solution was assumed
to be reached when the root-mean-square time deri-
vative of all the variables over the entire field
decreased to the order of magnitude of the trunca-
tion errors as estimated by a Taylor-series analy-
sis of the difference equations. It took about
500 time steps to reach the final solution.

The calculations were performed on the IBM

370/165 digital computer at the Technion. The com-
puter time for each time step was about 0.5 sec.

Results and Discussion

Numerical solutions for the boundary layer -
shock wave interaction were computed by the method
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described above for the following two cases: Mach
number My = 2.0, pressure ratio pm/p0 = 1.40
and 1. 91, impingement Reynolds number

RE = Ugpghs/lip = 2.96 % 105 and 3.2 x 10% res-
pectively. Here p, 1is the pressure downstream
of the reflected waves, and the subscript o de-
notes values in the undisturbed stream. The two
cases were chosen in order to compare the results
with experimental laminar-flow data reported by
Hakkinen et al. 19 and with a numerical solution
obtained for p,/py = 1.4 by MacCormack © . The
resulting streamlines, velocity profiles, tempera-
ture profiels, lines of constant Mach number, and
wall pressure distributions are shown in Figs. 2
and 3.

For both values of the pressure ratio, the
boundary layer is seen to separate and reattach,
in agreement with experimental observations. The
extent of the recirculation bubble and the magni-
tude of the reverse velocity are larger for the
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stronger shock. The temperature profiles have a
plateau in the recirculating region, as should be
expected.

The calculated pressure on the wall rises more
steeply than the experimental values. Further work
is being done to clarify the cause of this beha-
viour.

On the whole, the results are realistic and
agree reasonably with experimental data. It may
be concluded that the Brailovskaya finite difference
scheme used in conjunction with the simple-wave
boundary condition gives a suitable method for com-
puting the shock wave - laminar boundary layer in-
teraction.
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DISCUSSION

B.G. MNewman (McGill University, Montreal, Canada):

Is it necessary to develop a time-dependent
solution?

1. Hanin: Several steady-state iterative solutions
of Navier-Stokes equations were developed for
incompressible flows. However, the steady-state
methods of solution were either equivalent to
time-dependent methods or had worse stability
and convergence properties (1). Probably this
would also be the case regarding compressible
flows.
Reference:
{1) P.J. Roache, Computational Fluid Dynamics,
Hermosa Publishers, Albuquergue, N.M., 1972,
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